4 research outputs found

    COMPUTER-AIDED MODEL FOR BREAST CANCER DETECTION IN MAMMOGRAMS

    Get PDF
    The objective of this research was to introduce a new system for automated detection of breast masses in mammography images. The system will be able to discriminate if the image has a mass or not, as well as benign and malignant masses. The new automated ROI segmentation model, where a profiling model integrated with a new iterative growing region scheme has been proposed. The ROI region segmentation is integrated with both statistical and texture feature extraction and selection to discriminate suspected regions effectively. A classifier model is designed using linear fisher classifier for suspected region identification. To check the system's performance, a large mammogram database has been used for experimental analysis. Sensitivity, specificity, and accuracy have been used as performance measures. In this study, the methods yielded an accuracy of 93% for normal/abnormal classification and a 79% accuracy for bening/malignant classification. The proposed model had an improvement of 8% for normal/abnormal classification, and a 7% improvement for benign/malignant classification over Naga et al., 2001. Moreover, the model improved 8% for normal/abnormal classification over Subashimi et al., 2015. The early diagnosis of this disease has a major role in its treatment. Thus the use of computer systems as a detection tool could be viewed as essential to helping with this disease

    Intelligent Computer-Aided Model for Efficient Diagnosis of Digital Breast Tomosynthesis 3D Imaging Using Deep Learning

    Get PDF
    Abstract: Digital Breast Tomosynthesis (DBT) is a highly promising 3D imaging modality for breast diagnosis. Tissue overlapping is a challenge with traditional 2D mammograms, however since digital breast tomosynthesis can obtain three-dimensional images, tissue overlapping is reduced, making it easier for radiologists to detect abnormalities and resulting in improved and more accurate diagnosis. In this study, a new computer-aided multi-class diagnosis system is proposed that integrates DBT augmentation and colour feature map with a modified deep learn-ing architecture (Mod_AlexNet). In addition, an optimization layer is added with multiple opti-mizers for effective classification of multiple breast classes, including benign, normal, and ma-lignant. The proposed system comprises several techniques, including data augmentation, col-our feature mapping, optimization, and classification. Two experimental scenarios are applied, the first scenario proposed a computer-aided diagnosis (CAD) model that integrated DBT aug-mentation, image enhancement techniques and colour feature mapping with six deep learning models for feature extraction, including ResNet-18, AlexNet, GoogleNet, MobileNetV2, VGG-16 and DenseNet-201, to efficiently classify DBT slices. The second scenario compared the perfor-mance of the newly proposed Mod_AlexNet architecture and traditional AlexNet, using several optimization techniques and different evaluation performance metrics were computed. The op-timization techniques included Adaptive Moment Estimation (Adam), Root Mean Squared Prop-agation (RMSProp), and Stochastic Gradient Descent with Momentum (SGDM), for different batch sizes, including 32, 64 and 512. Experiments have been conducted on a large benchmark da-taset of breast tomography scans. The performance of the first scenario was compared in terms of accuracy, precision, sensitivity, specificity, runtime, and f1-score. While in the second scenar-io, performance was compared in terms of training accuracy, training loss, and test accuracy. In the first scenario, results demonstrated that AlexNet reported improvement rates of 1.69%, 5.13%, 6.13%, 4.79% and 1.6%, compared to ResNet-18, MobileNetV2, GoogleNet, DenseNet-201 and VGG16, respectively. Experimental analysis with different optimization techniques and batch sizes demonstrated that the proposed Mod_AlexNet architecture outperformed AlexNet in terms of test accuracy with an average improvement rate of 2.01%, 1.17% and 0.96% when com-pared using SGDM, Adam, and RMSProp optimizers, respectively

    Intelligent Computer-Aided Model for Efficient Diagnosis of Digital Breast Tomosynthesis 3D Imaging Using Deep Learning

    No full text
    Digital breast tomosynthesis (DBT) is a highly promising 3D imaging modality for breast diagnosis. Tissue overlapping is a challenge with traditional 2D mammograms; however, since digital breast tomosynthesis can obtain three-dimensional images, tissue overlapping is reduced, making it easier for radiologists to detect abnormalities and resulting in improved and more accurate diagnosis. In this study, a new computer-aided multi-class diagnosis system is proposed that integrates DBT augmentation and colour feature map with a modified deep learning architecture (Mod_AlexNet). To the proposed modified deep learning architecture (Mod AlexNet), an optimization layer with multiple high performing optimizers is incorporated so that it can be evaluated and optimised using various optimization techniques. Two experimental scenarios are applied, the first scenario proposed a computer-aided diagnosis (CAD) model that integrated DBT augmentation, image enhancement techniques and colour feature mapping with six deep learning models for feature extraction, including ResNet-18, AlexNet, GoogleNet, MobileNetV2, VGG-16 and DenseNet-201, to efficiently classify DBT slices. The second scenario compared the performance of the newly proposed Mod_AlexNet architecture and traditional AlexNet, using several optimization techniques and different evaluation performance metrics were computed. The optimization techniques included adaptive moment estimation (Adam), root mean squared propagation (RMSProp), and stochastic gradient descent with momentum (SGDM), for different batch sizes, including 32, 64 and 512. Experiments have been conducted on a large benchmark dataset of breast tomography scans. The performance of the first scenario was compared in terms of accuracy, precision, sensitivity, specificity, runtime, and f1-score. While in the second scenario, performance was compared in terms of training accuracy, training loss, and test accuracy. In the first scenario, results demonstrated that AlexNet reported improvement rates of 1.69%, 5.13%, 6.13%, 4.79% and 1.6%, compared to ResNet-18, MobileNetV2, GoogleNet, DenseNet-201 and VGG16, respectively. Experimental analysis with different optimization techniques and batch sizes demonstrated that the proposed Mod_AlexNet architecture outperformed AlexNet in terms of test accuracy with improvement rates of 3.23%, 1.79% and 1.34% when compared using SGDM, Adam, and RMSProp optimizers, respectively

    Intelligent Computer-Aided Model for Efficient Diagnosis of Digital Breast Tomosynthesis 3D Imaging Using Deep Learning

    No full text
    Digital breast tomosynthesis (DBT) is a highly promising 3D imaging modality for breast diagnosis. Tissue overlapping is a challenge with traditional 2D mammograms; however, since digital breast tomosynthesis can obtain three-dimensional images, tissue overlapping is reduced, making it easier for radiologists to detect abnormalities and resulting in improved and more accurate diagnosis. In this study, a new computer-aided multi-class diagnosis system is proposed that integrates DBT augmentation and colour feature map with a modified deep learning architecture (Mod_AlexNet). To the proposed modified deep learning architecture (Mod AlexNet), an optimization layer with multiple high performing optimizers is incorporated so that it can be evaluated and optimised using various optimization techniques. Two experimental scenarios are applied, the first scenario proposed a computer-aided diagnosis (CAD) model that integrated DBT augmentation, image enhancement techniques and colour feature mapping with six deep learning models for feature extraction, including ResNet-18, AlexNet, GoogleNet, MobileNetV2, VGG-16 and DenseNet-201, to efficiently classify DBT slices. The second scenario compared the performance of the newly proposed Mod_AlexNet architecture and traditional AlexNet, using several optimization techniques and different evaluation performance metrics were computed. The optimization techniques included adaptive moment estimation (Adam), root mean squared propagation (RMSProp), and stochastic gradient descent with momentum (SGDM), for different batch sizes, including 32, 64 and 512. Experiments have been conducted on a large benchmark dataset of breast tomography scans. The performance of the first scenario was compared in terms of accuracy, precision, sensitivity, specificity, runtime, and f1-score. While in the second scenario, performance was compared in terms of training accuracy, training loss, and test accuracy. In the first scenario, results demonstrated that AlexNet reported improvement rates of 1.69%, 5.13%, 6.13%, 4.79% and 1.6%, compared to ResNet-18, MobileNetV2, GoogleNet, DenseNet-201 and VGG16, respectively. Experimental analysis with different optimization techniques and batch sizes demonstrated that the proposed Mod_AlexNet architecture outperformed AlexNet in terms of test accuracy with improvement rates of 3.23%, 1.79% and 1.34% when compared using SGDM, Adam, and RMSProp optimizers, respectively
    corecore